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Abstract
A canonical approach to self-dressing in classical electrodynamics is presented.
A slowly moving, rigid charge distribution is assumed to be completely deprived
of the transverse electric field E⊥ at an initial time t ′1 and the development
of this component of the field is studied for t > t ′1 by solving the coupled
charge-field Hamilton equations of motion. The theory is specialized to charge
distributions of spherical symmetry, and in particular the point-charge, the
spherical shell of charge and the spherical volume of charge are considered.
As for the dynamics of the charge, the radiation-reaction force during self-
dressing is obtained and it is shown to be substantially different at short times
from the familiar form obtained for fully dressed charges, although it reduces
to the latter for times longer than the time taken by the light to traverse the
charge. Finally the most prominent features of the solution of the charge
equation of motion for short times are discussed. As for the field, an auxiliary
field Ec is introduced which is related to E⊥ and which has the advantage
of being easily calculable. It is shown that Ec propagates causally for all the
charge distributions considered and the way in which E⊥ can be obtained from
Ec is illustrated. In addition it is shown that the radiation-reaction force is
very simply related to the force exerted on the charge by Ec alone. In this
way the details of the time dependence of the radiation-reaction force can be
understood in terms of the behaviour of the field during self-dressing. It is
argued that the results obtained for the classical model are capable of shedding
light on fundamental issues of quantum electrodynamics, such as the theory
of measurement of the field amplitude and the onset of irreversible behaviour
during self-dressing.
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1. Introduction

The conceptual difficulty of separating sources from interacting fields in quantum field theory
has led in the past to the notion of dressing the bare microscopic building blocks of matter
(indicated as partons in an appropriate context [1]) by one or more zero-point radiation fields.
Thus in many circumstances it is convenient to focus on composite quantum mechanical
systems such as an atom or a molecule dressed by a cloud of virtual photons (in quantum
optics [2]), an electron or an exciton dressed by a cloud of virtual phonons (in solid state
physics [3]), an electron dressed by a cloud of virtual electron–positron pairs (in relativistic
QED [4]), a nucleon dressed by a cloud of virtualπ-mesons (in meson physics [5]) and quark–
antiquark pairs dressed by gluons (in QCD [6]). The mathematical structure of the theory of
dressed sources has been investigated in depth by Van Hove [7]. The dressed systems are
usually taken in a steady-state regime and often coincide with the total ground state of the
source-field Hamiltonian. In contrast, situations where the virtual cloud at some prescribed
time is not in the steady-state have also been considered and preliminarily discussed in terms
of half-dressed sources [8]. Assuming that appropriate dissipative processes exist [9, 10],
the asymptotic fate of an half-dressed source is to attain the fully dressed configuration. The
quantum dynamics of self-dressing has been described in a series of papers and summarized
in a recent review [11]. In all cases considered, taken from QED, solid state physics and
meson physics, the reconstruction of the virtual cloud is causal and takes place at the speed
of propagation of the field contributing to the cloud. Thus, although the experimental aspects
of the subject remain largely unexplored, physical effects related to the virtual cloud, such as
self-energy shifts, mass and charge renormalization and van der Waals forces [11], should be
expected to display time dependence at least when probed at sufficiently short times. From
this viewpoint it appears that reconstruction of the virtual cloud and self-dressing are related
to the fundamental problems of the quantum theory such as causality in quantum field theory
[12, 13], nonexponential decay of unstable particles [14] and measurement of the quantum
field amplitude [15, 16].

The importance of these issues, as well as the fact that comparison of classical and quantum
models often yields insight into physical phenomena [17], suggests considering a classical
analogue for the reconstruction of the virtual cloud and for self-dressing. Several classical
phenomena are reminiscent of self-dressing. An obvious candidate is transition radiation,
which is emitted by a charge crossing the boundary between two media with uniform velocity
[18]. In this case the radiation emitted may be thought to originate from the rearrangement of
the steady-state field surrounding the charge, which takes place when the charge crosses the
boundary. Perhaps less well known is that the mechanical counterpart of transition radiation
exists [19] for sources travelling in inhomogeneous elastic systems and finds applications in
railway engineering. Other examples can be found in the theory of earthquakes, according to
which the strain energy released is originally concentrated in a rather localized region around
a fault and, after rupturing, is in part radiated away in the form of seismic waves [20]. A
further example, most relevant for the purposes of the present paper, is radiation reaction in
classical electrodynamics [21] or in acoustics [22]. In particular the former can be interpreted
as a dynamical manifestation of the electromagnetic field surrounding a charge [23]. In
fact the radiation-reaction force stems from the rearrangement of this electromagnetic field
simultaneous with changes in the velocity of the charge.

Most of the efforts dedicated for over a century to the phenomenon of radiation reaction in
electrodynamics have focused on the form of the radiation-reaction force and on the dynamical
effects on the motion of the charge [24]. In contrast, in this paper we concentrate on the
dynamics of the field surrounding the charge. Naturally these two aspects are inseparable
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even in classical electrodynamics, because the coupling between the equations of motion for
source and field is at the root of this phenomenon. Consequently we have to consider also
the mechanical aspect to some extent. The link between the dynamics of the charge and that
of the field was emphasized some time ago by Moniz and Sharp [25] who pointed out that,
in obtaining as usual the expression of the radiation-reaction force in terms of the derivatives
of the charge velocity, one has to eliminate the field degrees of freedom by specifying the
radiation field at some definite time. The simplest state of the classical field is the completely
unexcited configuration, in contrast with the quantum case where the zero-point field is always
present. This suggests that one can investigate the classical self-dressing of a charge starting
from the completely unexcited field configuration and follow the time development of both
the field and radiation-reaction force. More precisely, in this paper we shall adopt a canonical
approach for a rigid classical charge distribution coupled to the classical electromagnetic field
in the radiation gauge. We shall discuss the motion of the charge in the nonrelativistic limit and
take the amplitude of all the field normal modes as zero at a time which, for historical reasons
connected with a previous investigation in the framework of the Bohr–Rosenfeld theory of
the measurement of the field amplitude [16] we have chosen to indicate as t ′1. The Hamilton
equations of motion for the charge, after elimination of the transverse field, yield the desired
expression for the radiation-reaction force FRR(t), whereas the Hamilton equations for the
field amplitudes can be integrated in terms of the motion of the charge. The part of this
procedure leading to FRR(t) is not new [26], but here we shall use it to discuss short times
after t ′1. In this way we shall be able to obtain the form of FRR(t) and to relate it to the time
development of the field, following in detail the various stages of the self-dressing process,
starting from an initial bare configuration of the charge.

At this point the difference is evident between our approach and the usual treatment of
radiation reaction, where the assumption of vanishing field mode amplitude at finite time t ′1
is not made and the field at t ′1 has the equilibrium value at each point in space appropriate to
a particle moving with a given velocity. Consequently we cannot rely on the considerations
developed by Rohrlich. In fact, as we shall see, the form of FRR(t) during self-dressing is
nontrivially different, for sufficiently short times after t ′1, from the familiar expression valid for
a fully dressed charge [28] and reduces to the latter only after the initial stage of self-dressing
is completed. We shall briefly discuss the possibility that the effects of this difference can be
detected experimentally. Finally we shall obtain explicit expressions for the time-dependent
field dressing the charge and relate the form of this field to that of the radiation-reaction force
during self-dressing.

2. Canonical approach to radiation reaction

In the Coulomb gauge the Hamiltonian for a set of identical point charges qi of mass mi

located at xi is, in Gauss units

H =
∑
i

1

2mi

pi
2 +

1

2

∑
ij

qiqj

|xi − xj | +
1

8π

∫
d3x

[
1

c2
Ȧ2

⊥ + (∇ × A⊥)2

]

−
∑
i

[
1

mic
qipi · A⊥(xi ) − 1

2mic2
qi

2A2
⊥(xi)

]
. (2.1)

Assuming that the charges are rigidly connected, |xi − xj | is constant and the Coulomb term
in (2.1) does not play any role in our model and can be discarded. The vector potential A⊥
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can be developed in plane waves with periodic boundary conditions on the surface of a cube
of side L. Thus

A⊥(x) =
∑
kj

√
2πh̄c2

L3ωk

εkj

(
akj eik·x + a∗

kj e−ik·x) (2.2)

where ωk = ck and akj is the classical complex amplitude of the field mode of wavevector k
and real polarization εkj (j = 1, 2). The appearance of h̄, introduced in (2.2) and in the rest
of this paper only for convenience, should not obscure the fact that the treatment we present is
purely classical throughout the paper. The canonical coordinates and their conjugate momenta
are xi , pi and akj , ih̄a∗

kj [29]. From the Hamilton equations

ẋi = ∂H

∂pi

ṗi = − ∂H

∂xi

(2.3)

we get

miẍi = 1

c
qiẋi × H(xi) − qi

∑
kj

√
2πh̄

L3ωk

εkj

(
ȧkj eik·xi + ȧ∗

kj e−ik·xi
)

(2.4)

where H = ∇ × A⊥ is the magnetic field. In addition the Hamilton equations

ȧkj = 1

ih̄

∂H

∂a∗
kj

(2.5)

yield

ȧkj = −iωkakj +
i

h̄

∑
i

qi

√
2πh̄

L3ωk

εkj · ẋi e−ik·xi (2.6)

Assuming that the motion of the charge consists of a rigid one-dimensional translation Q
(no rotation) along a given direction, such that xi = xi0 + Q(t), expression (2.6) is equivalent
to

ȧkj = −iωkakj +
i

h̄

√
2πh̄

L3ωk

εkj · Q̇i

∑
i

qi e−ik·xi . (2.7)

En passant we note that the inclusion of charge rotation has recently been shown to lead to
a mathematically consistent and physically viable classical Lorentz electrodynamics also in
the limit of vanishing bare charge [30]. This however is out of the scope of the present study.
Further, we spread the point charges into a continuum of charge density ρ(x, t) such that∑

i

qi e−ik·xi =
∫
V

d3x ρ(x, t)e−ik·x (2.8)

where V is the volume occupied by the charges at time t. We assume that V is much smaller
than L3 and entirely contained inside the quantization volume throghout the motion of the
system. Thus defining F(x, t) = ρ(x, t)/q , where q = ∑

i qi , we have∑
i

qi e−ik·xi = q

∫
L3

d3xF(x, t)e−ik·x = q

∫
L3

d3xF(x − Q(t))e−ik·x. (2.9)

In addition we expand F(x) as

F(x) = 1

L3

∑
k

f (k)eik·x f (k) =
∫
L3

d3xF(x)e−ik·x. (2.10)
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Hence∑
i

qi e−ik·xi = q
1

L3

∫
L3

d3x
∑
k′

f (k′)ei(k′−k)·x e−ik′·Q = qf (k)e−ik·Q (2.11)

and from (2.7) we obtain

ȧkj = −iωkakj +
i

h̄

√
2πh̄

L3ωk

qεkj · Q̇f (k)e−ik·Q. (2.12)

The general solution of (2.12) is

akj (t) = akj (t
′
1)e

−iωk(t−t ′1)

+
i

h̄

√
2πh̄

L3ωk

qf (k)e−iωk(t−t ′1)εkj ·
∫ t

t ′1

dt ′ Q̇(t ′)eiωk(t
′−t ′1) e−ik·Q(t ′) (2.13)

where t ′1 is the time at which we take the transverse field to vanish. Thus akj (t
′
1) = 0 and

differentiation of (2.13) yields

ȧkj (t)e−ik·xi = ωk

h̄

√
2πh̄

L3ωk

qf (k)eik·xi0 εkj ·
∫ t

t ′1

dt ′ Q̇(t ′)eiωk(t
′−t) e−ik·[Q(t ′)−Q(t)]

+
i

h̄

√
2πh̄

L3ωk

qf (k)eik·xi0εkj · Q̇(t). (2.14)

Before substituting (2.14) in (2.4) we make the following approximations. First, we take
Q̇ 	 c and consistently we neglect the Lorentz term in (2.4). Second, we assume small
displacements such that k · [Q(t ′) − Q(t)] ∼ 0. Then (2.4) takes the form

miẍi = −2π

L3
q
∑
kj

1

ωk

εkj f (k)qi eik·xi0εkj ·
[
ωk

∫ t

t ′1

dt ′ Q̇(t ′)eiωk(t
′−t) + iQ̇(t)

]
+ cc (2.15)

where the small displacement assumption involves some limitation of the sum over k which
we shall discuss later. Summation over i gives

MQ̈ = −4π

L3
q2
∑
kj

f 2(k)εkj

∫ t

t ′1

dt ′ εkj · Q̇(t ′) cosωk(t
′ − t) (2.16)

whereM = ∑
i mi and where we have used (2.11) with Q = 0. We note that, in the absence of

external forces, the RHS of (2.16) is the radiation-reaction force F RR(t) acting on the charge.
The well-known rules for polarization sums [2] lead to

1

L3

∑
kj

f 2(k)εkj

∫ t

t ′1

dt ′ εkj · Q̇(t ′) cosωk(t
′ − t)

= 1

L3

∑
k

f 2(k)

∫ t

t ′1

dt ′ [Q̇(t ′) − k̂k̂ · Q̇(t ′)] cosωk(t
′ − t) (2.17)

where k̂ is the unit vector along k. Specializing to the case of a spherically symmetric charge
distribution, we find

f (k) =
∫
L3

d3xF(x)e−ik·x = 4π

k

∫ ∞

0
dx xF(x) sin kx ≡ f (k). (2.18)
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Consequently the angular parts of the sums in (2.17) are easily worked out as

1

L3

∑
k

f 2(k) cosωk(t
′ − t) = 1

2π2

∫ ∞

0
dk k2f 2(k) cosωk(t

′ − t)

(2.19)
1

L3

∑
k

f 2(k)k̂k̂ · Q̇(t ′) cosωk(t
′ − t) = 1

6π2
Q̇(t ′)

∫ ∞

0
dk k2f 2(k) cosωk(t

′ − t).

Thus for the RHS of (2.16) we have

F RR(t) = − 4

3π
q2
∫ t

t ′1

dt ′ Q̇(t ′)
∫ ∞

0
dk k2f 2(k) cosωk(t

′ − t) (2.20)

which is a relatively compact expression for the classical radiation-reaction force on a slow
spherically symmetric charge which is bare (i.e. deprived of the transverse part of its field) at
t = t ′1.

The following points should be noted.
(i) Expression (2.20) is unambiguously the radiation-reaction force only in the absence of

other forces acting on the charge. In the presence of another force F ext the partition of the total
force into F ext and F RR is not experimentally verifiable and consequently questionable [31].
One has to redefine F RR when dealing with cases where F ext = 0. We shall disregard here
the question whether the forces which bind the rigid charge distribution should be included in
F ext or not. (ii) From expression (2.20) it is manifest that uniform motion is not in general
a solution of the dynamical equations during self-dressing. We shall consider this aspect
more closely in the next section. (iii) The small-displacement approximation made in (2.14)
effectively limits the range of k in the integration appearing in (2.20). Consequently an upper
cut-off kc should be introduced, which is actually a function of t − t ′1. Thus in general the
limit of F RR for t = t ′1, as evaluated from (2.20), should not be expected to yield the true
radiation-reaction force at t = t ′1 (which must always vanish) except in cases where∫ kc

0
dk k2f 2(k) cosωk(t

′ − t)

is a well-behaved function of t ′ − t which is not influenced much by the value of kc. Note,
however, that the small-displacement approximation is less restrictive than the electric dipole
approximation ka ∼ 0, which we have not used in this paper. Consequently we are entitled
to consider times such that t − t ′1 < 2a/c. We shall discuss this point in the course of the
next section. In addition it should be noted that Galgani et al [32] did not make the small-
displacement approximation in a similar model and solved numerically the equations for the
mode amplitudes in order to obtain the time dependence of the radiation energy spectrum.
Their study, however, was in connection with the Fermi–Ulam–Pasta problem and they did
not obtain the time development of the electric field as we shall do in section 4.

3. Radiation reaction on a spherically symmetric charge

In this section we shall discuss the form taken by F RR for a number of spherically symmetric
charge distributions.

3.1. Point charge

Including the treatment of a point charge in the context of the present paper can be considered
questionable. In fact it is not clear that a point charge should be considered unambiguously the
limit of a spherically symmetric charge distribution, as also nonspherically symmetric charges
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can be reduced to the point limit by appropriate procedures. In addition the classical theory
of the electron suffers from dynamical pathologies, such as runaway solutions and noncausal
behaviour, when its radius shrinks below the so-called classical electron radius [21]. This has
been taken to indicate the existence of a length scale below which the validity of classical
electrodynamics is questionable [25, 28, 33, 34]. In addition, several attempts at shedding
light on the dynamics of a classical point charge in the presence of radiation reaction are still
under way [30, 35–38] with the aim of providing a classical or semiclassical version of the
electron, and this problem does not seem completely settled yet. In this paper we do not intend
to model an electron. Nevertheless we shall find it useful to compare the results of an extended
charge with those of a point charge; so we disregard the subtleties discussed in these studies
and proceed naively from our results of the previous sections.

For a point charge we use F(x) = δ(x)/4πx2 [39] and consequently f (k) = 1 from
(2.18). Substituting in (2.20) yields, for t > t ′1,

F RR(t) = − 4

3π
q2
∫ t

t ′1

dt ′ Q̇(t ′)
∫ ∞

0
dk k2 cos ck(t ′ − t)

= 4

3π

1

c2
q2
∫ t

t ′1

dt ′Q̇(t ′)
d2

dt ′2

∫ ∞

0
dk cos ck(t ′ − t)

= 4

3c3
q2
∫ t

t ′1

dt ′ Q̇(t ′)δ′′(t ′ − t) = 4

3c3
q2

[
−Q̈(t)δ(0) +

1

2
˙̈Q(t)

]
(3.1)

which leads to the Abraham–Lorentz equation for the point charge, including the divergent
mass correction [40] as well as the 4/3 factor, on which however we shall not dwell in this
paper [41].

3.2. Spherical shell

Most calculations of F RR have been performed on this model [24], which has the advantage
of being mathematically manageable. In this model the charge is uniformly distributed over
the surface of a sphere of radius a. Thus from (2.18) we find

F(x) = 1

4πa2
δ(x − a) f (k) = 4π

k

∫ ∞

0
dx

x

4πa2
δ(x − a) sin kx = sin ka

ka
(3.2)

and, after some algebra,∫ ∞

0
dk k2f 2(k) cosωk(t

′ − t) = π

4a2c

[
2δ(t ′ − t) − δ

(
2a

c
+ t ′ − t

)
− δ

(
2a

c
− t ′ + t

)]
.

(3.3)

Substitution of (3.3) into (2.20) leads, for t > t ′1, to

F RR(t) = − 1

3a2c
q2

[
Q̇(t) − Q̇

(
t − 2a

c

)
θ

(
t − t ′1 − 2a

c

)]
. (3.4)

We note that (3.4) reduces to the usual expression [28]

F RR(t) = − 1

3a2c
q2

[
Q̇(t) − Q̇

(
t − 2a

c

)]
(3.5)

only for t − t ′1 > 2a
c

, which we consider as an indication of the influence of retardation of the
self-dressing process for t − t ′1 < 2a

c
. Actually the discrepancy between (3.4) and (3.5) can be

ascribed to the different assumptions about the initial state of the field. In fact (3.5) is obtained
starting from the proper frame in which the charge is instantaneously at rest. In this proper
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frame the initial transverse field vanishes, while in the laboratory frame it has the equilibrium
value, at each point in space, appropriate to a charge moving with velocity Q̇. Consequently,
in the absence of external forces, there is no radiation reaction on the charge at any time. In
contrast, here we are concerned with an initially bare particle in the laboratory frame, which
starts building up its own dressing transverse field immediately and consequently experiences
the radiation-reaction force (3.4) at times t < t ′1 + 2a

c
even in the absence of external forces.

After time t ′1 + 2a
c

the dressing field in the immediate vicinity of the charge is completely
reconstructed and (3.4) becomes equivalent to (3.5).

3.3. Spherical volume

Consideration of this model seems appropriate in view of a recent debate in connection with
the Bohr–Rosenfeld theory of measurement of the quantum electromagnetic field amplitude
[15, 16, 42, 43]. The charge is uniformly distributed within a sphere of radius a. Thus we
have

F(x) = 3

4πa3
θ(a − x) f (k) = 3

ka3

∫ a

0
dx x sin kx = 3

ka
j1(ka). (3.6)

After some algebra we obtain∫ ∞

0
dk k2f 2(k) cosωk(t

′ − t) = 3π

2a3

[
1 − 3

c(t − t ′)
2a

+ 2
c3(t − t ′)3

8a3

]
θ

[
2a

c
− (t − t ′)

]
(3.7)

which leads to

F RR(t) = − 2

a3
q2
∫ t

t ′1

dt ′Q̇(t ′)
[

1 − 3
c(t − t ′)

2a
+ 2

c3(t − t ′)3

8a3

]
θ

[
2a

c
− (t − t ′)

]
. (3.8)

Expression (3.8) shows that F RR is, as expected, invariant under replacement of Q(t) by
Q(t)+ Q0, where Q0 is independent of t. This is a consequence of the translational invariance
of the Lagrangian from which the Hamiltonian (2.1) can be derived.

As remarked at the end of section 2, the apparent discontinuity in (3.1) and (3.4) at t = t ′1
is a consequence of the small-displacement approximation, which we have performed in order
to obtain (2.20). This discontinuity could be eliminated by introducing a cut-off kc in the
integrations over k. In this way the δ-functions appearing in (3.1) and (3.3) would smear
into peaks of width k−1

c and the discontinuity would disappear. This confirms that in reality
F RR(t

′
1) vanishes and that the true expressions for F RR(t) are different from those evaluated

in this section in a range of times such that t − t ′1 � (ckc)
−1. Since kc � 1

2a , however, failure
of expressions (3.1), (3.4) and (3.8) is limited to times such that t − t ′1 	 2a

c
and it is negligible

for our purposes. It should be mentioned that the above outlined procedure to eliminate the
discontinuity of F RR at t = t ′1 is reminiscent of the trick used by Yaghjian, who introduced
by hand an appropriate step function in order to eliminate preacceleration of a charge of finite
extent [24], although the context seems rather different.

Although the dynamics of the charge is not central to the subject of this paper, it may be
interesting to discuss briefly the consequences of the form of (3.5) and (3.8) on the motion
of an extended charged body, disregarding the failure of these expressions for times such that
t − t ′1 	 2a

c
. In particular, we concentrate on the range of t such that t − t ′1 < 2a

c
. For a

spherical shell, expression (3.4) yields the following equation of motion

MQ̈(t) = − 1

3a2c
q2Q̇(t) (3.9)
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where M is the (positive) bare mass of the shell. The solution of (3.9) is a damped motion
with a damping time

γ−1 = 3Ma2c

q2
(3.10)

which is capable of bringing the shell essentially to rest before time 2a/c, provided
2q2/3a � Mc2. On the other hand, for a spherical volume expression (3.8) yields

MQ̈(t) = − 2

a3
q2
∫ t

t ′1

dt ′Q̇(t ′)
[

1 − 3
c(t − t ′)

2a
+ 2

c3(t − t ′)3

8a3

]
(3.11)

which is also likely to describe a damping motion of nonlocal character, but which we have
failed to solve exactly. However one can expand

Q̇(t ′) =
∞∑
n=0

(−1)n

n!
(t − t ′)nQ(n+1)(t) (3.12)

where Q(n)(t) is the nth derivative of Q with respect to t. Substituting (3.12) into (3.11)
and keeping only derivatives of Q(t) up to the second in the corresponding expansion of the
integral leads to

MQ̈(t) = −κQ̇(t) − δM(t)Q̈(t) (3.13)

where

κ(t) = 4

a2c
q2 c(t − t ′1)

2a

[
1 − 3

2

c(t − t ′1)
2a

+
1

2

c3(t − t ′1)
3

8a3

]

δM(t) = − 8

ac2
q2 c

2(t − t ′1)
2

4a2

[
1

2
− c(t − t ′1)

2a
+

2

5

c3(t − t ′1)
3

8a3

]
.

(3.14)

Thus in (3.13) both the mass correction δM and the damping coefficient κ are time dependent,
and its solution is

Q̇(t) = Q̇(t ′1)exp

(
−
∫ t

t ′1

dt ′
κ(t ′)

M + δM(t ′)

)
(3.15)

which describes acceleration or damping depending on the relative values of the physical
parameters of the system, since the dressed mass can become negative for

4(
√

3 − 1)
q2

a
> Mc2. (3.16)

It is not clear, however, under which conditions one can truncate the series in (3.12).
Nevertheless, as mentioned earlier, a discussion of the dynamics of an extended charge is
beyond the scope of the present paper, although it should be pointed out that such a discussion
might lead to interesting results, particularly in the presence of a harmonic binding force [44].

4. Self-dressing of a spherically symmetric charge

In the Coulomb gauge the general expression for the transverse electric field is

E⊥(x, t) = −1

c
Ȧ⊥(x, t) = i

∑
kj

√
2πh̄ωk

V
εkj

(
akj (t)eik·x − a∗

kj (t)e
−ik·x) . (4.1)

In the presence of a charge the akj amplitudes are determined by the charge and by the initial
conditions. Assuming spherical charge symmetry and a bare charge at t = t ′1, from (2.13) we
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get, after summing over polarization,

E⊥(x, t) = −4π

L3
q
∑

k

f (k)

{∫ t

t ′1

dt ′ Q̇(t ′) cos[k ·x + ωk(t
′ − t)]

− k̂

∫ t

t ′1

dt ′ k̂ · Q̇(t ′) cos[k ·x + ωk(t
′ − t)]

}
(4.2)

which can also be cast in the form

E⊥i(x, t) = −4π

L3
q
∑

k

f (k)(δij − k̂ik̂j )

∫ t

t ′1

dt ′ Q̇j (t
′) cos[k · x + ωk(t

′ − t)]. (4.3)

The last expression prompts the introduction of an auxiliary field

Ec(x, t) = −4π

L3
q
∑

k

f (k)

∫ t

t ′1

dt ′ Q̇(t ′) cos[k · x + ωk(t
′ − t)] (4.4)

whose transverse component is E⊥(x, t) and whose longitudinal component is a vector field
EL(x, t) defined as

ELi(x, t) = −4π

L3
q
∑

k

f (k)k̂i k̂j

∫ t

t ′1

dt ′ Q̇j (t
′) cos[k · x + ωk(t

′ − t)]

= 4π

L3
q∇i∇j

∑
k

1

k2
f (k)

∫ t

t ′1

dt ′ Q̇j (t
′) cos[k · x + ωk(t

′ − t)] (4.5)

where ∇ = ∂/∂x.
From (4.2) we have the relation

Ec(x, t) = E⊥(x, t) + EL(x, t). (4.6)

Naturally Ec(x, t) should not be confused with the total field ETOT(x, t) created by the
charge. The latter is given by

ETOT(x, t) = E⊥(x, t) + E‖(x, t). (4.7)

Nevertheless, although ETOT(x, t) = Ec(x, t), E⊥(x, t) is the transverse part of ETOT(x, t)
as well as of Ec(x, t). In fact, at least in principle, one can evaluate E⊥(x, t) as

E⊥i(x, t) =
∫

d3x′ Ecj (x
′, t)δ⊥ij (x − x′) (4.8)

where δ⊥ij is the transverse part of the δ-function [45], once Ec(x, t) is known. Consequently
Ec(x, t) contains the same information as E⊥(x, t), and its form (4.4) is easier to evaluate
than (4.3). Thus in what follows we shall concentrate on the derivation of Ec(x, t) for each of
the charge distributions considered in the previous section, as a convenient means of discussing
the self-dressing process. Eventually we shall also show that it is possible to relate Ec(x, t)
directly to F RR(t) during self-dressing.

4.1. Point charge

As already mentioned f (k) = 1 for a point charge. Thus, changing sums into integrals and
performing standard angular integrations, we have

1

L3

∑
k

f (k) cos[k · x + ωk(t
′ − t)] = 1

2π2

1

x

∫ ∞

0
dk k sin kx cos ck(t ′ − t)

= 1

4πc2

1

x

{
δ′
[
t ′ −

(
t +

x

c

)]
− δ′

[
t ′ −

(
t − x

c

)]}
(4.9)



Self-dressing and radiation reaction in classical electrodynamics 3639

where δ′ indicates differentiation of the δ-function with respect to t ′. Substitution of (4.9) into
(4.4) yields

Ec(x, t) = − 1

c2

1

x
qQ̈

(
t − x

c

)
θ
(
t − t ′1 − x

c

)
. (4.10)

We see that self-dressing of a point charge, as described by the field Ec(x, t), is a causal
process since it takes place within a sphere of radius c(t − t ′1) and since Ec(x, t) vanishes
outside such a sphere. For this reason we call such a sphere the ‘causality sphere’. For a
point charge it is also relatively easy, as well as instructive, to derive an explicit expression for
the longitudinal component EL(x, t) of Ec(x, t). In fact from (4.5) we have, using partial
integration

ELi(x, t) = 2

π
q∇i∇j

∫ t

t ′1

dt ′ Q̇j (t
′)

1

x

∫ ∞

0
dk

1

k
sin kx cos ck(t ′ − t)

= 2

π
q∇i∇j

1

x

{
Qj(t

′)
∫ ∞

0
dk

1

k
sin kx cos ck(t ′ − t)

∣∣∣∣∣
t

t ′1

−
∫ t

t ′1

dt ′Qj(t
′)

d

dt ′

∫ ∞

0
dk

1

k
sin kx cos ck(t ′ − t)

}
. (4.11)

In addition
d

dt ′

∫ ∞

0
dk

1

k
sin kx cos ck(t ′ − t) = −c

∫ ∞

0
dk sin kx sin ck(t ′ − t)

= −π

2

{
δ
[
t ′ −

(
t +

x

c

)]
− δ

[
t ′ −

(
t − x

c

)]}
(4.12)

which, after substitution in (4.11) and some algebra, leads to

ELi(x, t) = q∇i∇j

1

x

{
[Qj(t) − Qj(t

′
1)] −

[
Qj

(
t − x

c

)
− Qj(t

′
1)
]
θ
(
t − t ′1 − x

c

)}
.

(4.13)

Explicitly we have

ELi(x, t) = − 1

x3
q(δij − 3x̂i x̂j )[Qj(t) − Qj(t

′
1)] + q

{
1

x3
(δij − 3x̂i x̂j )

[
Qj

(
t − x

c

)

− Qj(t
′
1)
]

+
1

c

1

x2
(δij − 3x̂i x̂j )Q̇j

(
t − x

c

)
− 1

c2

x̂i x̂j

x
Q̈j

(
t − x

c

)}
θ
(
t − t ′1 − x

c

)
+ terms in δ[x − c(t − t ′1)] and in δ′[x − c(t − t ′1)]. (4.14)

Expressions (4.10) and (4.14) can be substituted in (4.6) to yield an explicit expression for the
transverse field in the form

E⊥i(x, t) = Eci(x, t) − ELi(x, t)

= 1

x3
q(δij − 3x̂i x̂j )[Qj(t) − Qj(t

′
1)] − q

{
1

x3
(δij − 3x̂i x̂j )

[
Qj

(
t − x

c

)

− Qj(t
′
1)
]

+
1

c

1

x2
(δij − 3x̂i x̂j )Q̇j

(
t − x

c

)
+

1

c2

1

x
(δij − x̂i x̂j )Q̈j

(
t − x

c

)}
θ
(
t − t ′1 − x

c

)
+ terms in δ[x − c(t − t ′1)] and in δ′[x − c(t − t ′1)]. (4.15)
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We see that neither E⊥(x, t) nor EL(x, t) are causal, although they both vanish at t = t ′1 for
any x > 0 as expected.

We complete our discussion of self-dressing of a point charge by evaluating the total
electric field

ETOT(x, t) = E‖(x, t) + E⊥(x, t). (4.16)

The longitudinal field E‖(x, t) is simply the Coulomb field generated by the point charge and
propagates instantaneously. It is given by

E‖(x, t) = q
R(t)

R3(t)
R(t) = x − Q(t). (4.17)

In the linear approximation used throughout this paper

E‖i(x, t) = q
x̂i

x2
− 1

x3
q(δij − 3x̂i x̂j )Qj (t). (4.18)

Substitution of (4.15) and (4.18) in (4.16) yields

ETOTi(x, t) = q
x̂i

x2
− 1

x3
q(δij − 3x̂i x̂j )Qj (t

′
1)
[
1 − θ

(
t − t ′1 − x

c

)]
− q

[
1

x3
(δij − 3x̂i x̂j )Qj

(
t − x

c

)
+

1

c

1

x2
(δij − 3x̂i x̂j )Q̇j

(
t − x

c

)

+
1

c2

1

x
(δij − x̂i x̂j )Q̈j

(
t − x

c

)]
θ
(
t − t ′1 − x

c

)
+ terms in δ[x − c(t − t ′1)] and in δ′[x − c(t − t ′1)]. (4.19)

Thus at t = t ′1 only the Coulomb field E‖(x, t ′1) of the charge is present, in accord with the
initial conditions assumed. For t > t ′1, ETOT(x, t) consists of this original field as well as of
other contributions which propagate causally. The latter causal contributions do not arise from
E⊥(x, t) alone (which, as we have seen, does not propagate causally) but also, in part, from
the longitudinal field at time t. Indeed if one cancels E‖(x, t ′1) by introducing a fixed charge
−q at point Q(t ′1), which compensates exactly the longitudinal field of the mobile charge q at
time t ′1, ETOT(x, t) is immediately seen from (4.19) to propagate causally. Furhermore, in the
limit t ′1 → −∞, ETOT takes the form

ETOTi(x,−∞) = q
x̂i

x2
− q

[
1

x3
(δij − 3x̂i x̂j )Qj

(
t − x

c

)
+

1

c

1

x2
(δij − 3x̂i x̂j )Q̇j

(
t − x

c

)

+
1

c2

1

x
(δij − x̂i x̂j )Q̈j

(
t − x

c

)]
(4.20)

which can be shown to coincide with the Lienard–Wiechert field in the linear approximation,
as expected of a charge whose dressing process has been completed long ago. We conclude
that the self-dressing of a point charge proceeds as expected, in spite of the anomalies that
plague the dynamics of the charge.

4.2. Spherical shell

As we have argued, Ec(x, t) provides a good representation of the self-dressing process,
since the transverse field can be obtained from it using (4.8) and since it is also possible to
get ETOT(x, t) from (4.7) once E‖(x, t) is evaluated from the Poisson equation. Thus here
we shall evaluate only Ec(x, t) for the spherical shell using (4.6). For this case we have
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f (k) = sin ka/ka and consequently, after performing angular integrations, we get

1

L3

∑
k

f (k) cos[k · x + ωk(t
′ − t)] = 1

2π2a

1

x

∫ ∞

0
dk sin ka sin kx cos ck(t ′ − t)

= − 1

8πa

1

x
{δ[a + x + c(t ′ − t)] − δ[a − x − c(t ′ − t)]

+ δ[a + x − c(t ′ − t)] − δ[a − x + c(t ′ − t)]}. (4.21)

Substituting in (4.4) and performing the time integration leads to

Ec(x, t) = 1

2ac
q

1

x

{
Q̇
(
t − x + a

c

)
θ [c(t − t ′1) − (x + a)] − Q̇

(
t − x − a

c

)
θ [c(t − t ′1)

− (x − a)]θ(x − a) − Q̇

(
t +

x − a

c

)
θ [c(t − t ′1) + (x − a)]θ(a − x)

}
.

(4.22)

Outside the shell (x > a)

Ec(x, t) = 1

2ac
q

1

x

{
Q̇
(
t − x + a

c

)
θ [c(t − t ′1) − (x + a)]

(4.23)
− Q̇

(
t − x − a

c

)
θ [c(t − t ′1) − (x − a)]

}
.

Thus outside the shell Ec(x, t) behaves causally, in the sense that it vanishes outside an
expanding sphere of radius c(t − t ′1) + a. In addition it is structured, in the sense that in
the region c(t − t ′1) − a < x < c(t − t ′1) + a its form is different from that in the region
x < c(t − t ′1) − a. This effect is a result of the interference between the fields emitted by
different parts of the shell and carries information on the structure of the shell at large distances
from the source. Note that as a → 0 expression (4.23) tends to

Ec(x, t) = − 1

c2

1

x
q
[
Q̈
(
t − x

c

)
θ
(
t − t ′1 − x

c

)
+ Q̇

(
t − x

c

)
δ
(
t − t ′1 − x

c

)]
(4.24)

which is identical to the corresponding field of a point charge (4.10), except on the surface of
the causality sphere. Inside the shell (x < a) expression (4.22) gives

Ec(x, t) = 1

2ac
q

1

x

{
Q̇
(
t − a + x

c

)
θ [c(t − t ′1) − (a + x)]

− Q̇

(
t − a − x

c

)
θ [c(t − t ′1) − (a − x)]

}
. (4.25)

Thus in the inner space Ec(x, t) takes the form

(a) Ec(x, t) = 0

(
t − t′1 <

a − x

c

)

(b) Ec(x, t) = − 1

2ac
q

1

x
Q̇

(
t − a − x

c

) (
a − x

c
< t − t′1 <

a + x

c

)

(c) Ec(x, t) = 1

2ac
q

1

x

[
Q̇
(

t − a + x

c

)
− Q̇

(
t − a − x

c

)] (
t − t′1 >

a + x

c

)
.

(4.26)

Evidently Ec(x, t) also behaves causally inside the shell, in the sense that in a first phase it
vanishes inside a contracting sphere of radius a − c(t − t ′1) and it is of the form (b) in (4.26)
outside this causality sphere. This first phase ends at time t = t ′1 + a

c
, when the radius of the
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contracting causality sphere vanishes and another causality sphere of radius c(t − t ′1) arises.
Inside this expanding causality sphere Ec(x, t) is of the form (c) and outside it is of the form (b)
in (4.26). The second phase of self-dressing is concluded at time t = t ′1 + 2a

c
when the

expanding causality sphere fills the whole volume within the shell of charges. Note that the
form of the field Ec(x, t) at the surface of the shell of charges switches abruptly from (b) to
(c) at time t = 2a

c
.

Summing up, the self-dressing of the shell of charges can be described in terms of two
causality spheres, the first of which has radius R+ = c(t − t ′1) + a and the second of which
has radius R− = |c(t − t ′1) − a| < R+. For x > R+, Ec(x, t) vanishes. For R− < x < R+,
Ec(x, t) is of the form (b) in (4.26). For x < R−, Ec(x, t) vanishes if t − t ′1 < a

c
and it is of

the form (c) if t − t ′1 > a
c
.

4.3. Spherical volume

If the charge density is distributed uniformly within a sphere of radius a, f (k) = 3j1(ka)/ka.
Thus
1

L3

∑
k

f (k) cos[k · x + ωk(t
′ − t)] = 3

2π2a

1

x

∫ ∞

0
dk j1(ka) sin kx cos ck(t ′ − t)

= 1

x

1

2π2

√
9π

8a3

∫ ∞

0
dk k−1/2J3/2(ka){sin k[x + c(t ′ − t)] + sin k[x − c(t ′ − t)]}.

(4.27)

The last integral can be done with the help of the tables [46] and we have

1

L3

∑
k

f (k) cos[k · x + ωk(t
′ − t)] = 1

x

1

2π2

√
9π

8a3

1√
2a

&(1/2)

&(2)

×
{
C

1/2
1

[
x + c(t ′ − t)

2a

]
θ [a − x − c(t ′ − t)]sgn[x + c(t ′ − t)]

+C
1/2
1

[
x − c(t ′ − t)

2a

]
θ [a − x + c(t ′ − t)]sgn[x − c(t ′ − t)]

}
(4.28)

where&(z) is the gamma-function and the Gegenbauer polynomial is defined as C1/2
1 (z) = 2z.

Consequently (4.4) gives

Ec(x, t) = − 3

a3
q

1

x

∫ t

t ′1

dt ′ Q̇(t ′){|c(t − t ′) − x|θ [a + c(t − t ′) − x]

+ |c(t − t ′) + x|θ [a − c(t − t ′) − x]}. (4.29)

The analysis of this expression for x < a is not straightforward. For x > a, however, (4.29)
can be cast in the form

Ec(x, t) = − 3

a3
q

1

x

∫ t− x−a
c

t ′1

dt ′ Q̇(t ′)|c(t − t ′) − x|θ [c(t − t ′1) − (x − a)] (4.30)

which shows that Ec(x, t) is also causal for the spherical volume of charge in the region
external to the source.

We conclude this section by discussing the relation between Ec(x, t) and FRR(t) for a
spherically symmetric source. Writing (4.4) in the form

Ec(x, t) = −2π

L3
q
∑

k

f (k)

{
eik·x

∫ t

t ′1

dt ′ Q̇(t ′)eiωk(t
′−t) + cc

}
(4.31)



Self-dressing and radiation reaction in classical electrodynamics 3643

we define the quantity

F c(t) =
∫
L3

d3x ρ(x)Ec(x, t) = q

∫
L3

d3 xF(x)Ec(x, t)

= −4π

L3
q2
∑

k

f 2(k)

∫ t

t ′1

dt ′ Q̇(t ′) cosωk(t
′ − t)

= − 2

π
q2
∫ t

t ′1

dt ′ Q̇(t ′)
∫ ∞

0
dk k2f 2(k) cosωk(t

′ − t) (4.32)

where we have used (2.18) and the first of (2.19). Comparison of (4.32) with (2.20) shows
that F c(t), which is the force exerted on the source by the field Ec(x, t) during self-dressing,
is simply related to the radiation-reaction force as

F c(t) = 3
2FRR(t). (4.33)

This is an interesting expression since it connects in detail the form of FRR(t) with the
propagation of Ec(x, t). For example, in the case of the spherical shell the jump in FRR(t)

for t = t ′1 + 2a
c

present in (3.4) is manifestly due to the impact of the internal causality sphere
of radius R− on the shell of charge.

5. Summary and conclusions

We have used a canonical approach to obtain the coupled equations of motion for a spherically
symmetric charge and for the electromagnetic field in the Coulomb gauge of classical
electrodynamics, using the constraints of one-dimensional slow motion and in the absence of
external forces. We have assigned initial conditions to the field, such that the transverse part
of the electric field vanishes at a predetermined time t ′1 and we have obtained the equations
of motion for the charge. These equations depend on t ′1 in such a way that the radiation-
reaction force FRR(t) vanishes at t = t ′1 and they reduce to the familiar equations of motion
for t ′1 → −∞. Turning to the transverse part of the field, we have argued that, given the
initial conditions assumed, it describes a process of classical self-dressing starting from a
bare charge configuration. We have obtained an expression for E⊥(x, t) at times t > t ′1,
which we have partitioned into a longitudinal field EL(x, t) and into another auxiliary field
Ec(x, t). We have shown that the latter field develops causally in all cases explicitly considered
(i.e. point charge, spherical shell and spherical volume) and that it contains the same
information as E⊥(x, t). Such a reconstruction of the electromagnetic field seems in
agreement with the recent remarks by Carati and Galgani [47]. Thus we have concentrated on
the details of the time development of Ec(x, t) and we have been able to relate the form of
the radiation-reaction force FRR(t) with these details. Finally, we have obtained a very simple
relation between FRR(t) and the force exerted by Ec(x, t) on the charge.

These results seem to open a wide field of investigation. Here we mention only the more
obvious issues. First, it should be noted that the Bohr–Rosenfeld analysis of the measurement
of the amplitude of a quantum field is based on a gedanken apparatus in which the pointer is
constituted by a rigid mobile charge which at t = t ′1 is completely neutralized by an identical
fixed charge [15]. Thus the transverse electric field at t = t ′1 vanishes and the present analysis
should apply with relatively minor modifications. Secondly, self-dressing of a bare source in
QED leads to a transition between two different vacua, which seems to introduce irreversibility
in the dynamics, by the emission of low-frequency photons [9, 10]. It seems appropriate to
investigate if an analogous irreversibility exists in classical self-dressing, particularly in view
of the ongoing controversy about the meaning of irreversibility in electrodynamics [48, 49].
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Thirdly, self-dressing in QED is fully causal and electromagnetic forces have been shown to be
transmitted only causally, although field correlations are not causal [50]. It would be interesting
to check if this is also the case for classical electrodynamics. Fourthly, the expressions for
the radiation-reaction force during self-dressing obtained here seem to indicate that during an
initial time, shorter than the time taken by the light to traverse the source, the dynamics of the
latter is governed by a set of rapidly varying parameters such as effective mass and damping
coefficient. It could be interesting to investigate the consequences of this initial variability
on the motion of the source which takes place at later times, in view of the possibility of
detecting experimentally some effects of self-dressing. We intend to address these questions
in the future.
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Tecnologica. They are also grateful to E A Power and T Thirunamachandran for discussions
and remarks on this manuscript.

References

[1] Drell S D and Yang T M 1971 Ann. Phys., NY 66 578
[2] Compagno G, Passante R and Persico F 1995 Atom–Field Interactions and Dressed Atoms (Cambridge:

Cambridge University Press)
[3] Kuper G C and Whitfield G D (eds) 1963 Polarons and Excitons (Edinburgh: Oliver and Boyd)
[4] Schweber S S 1964 An Introduction to Relativistic Quantum Field Theory (New York: Harper and Row)
[5] Henley E M and Thirring W 1962 Elementary Quantum Field Theory (New York: McGraw-Hill)
[6] Gottfried K and Weisskopf V 1986 Concepts of Particle Physics (Oxford: Oxford University Press)
[7] Van Hove L 1955 Physica 21 901

Van Hove L 1956 Physica 22 343
[8] Feinberg E L 1980 Sov. Phys.–Usp. 23 629
[9] Passante R, Petrosky T and Prigogine I 1993 Opt. Commun. 99 55

Passante R, Petrosky T and Prigogine I 1995 Physica A 218 437
Karpov E, Prigogine I, Petrosky T and Pronko G 2000 J. Math. Phys. 41 118

[10] Compagno G and Valenti D 1999 J. Phys. B: At. Mol. Opt. Phys. 32 4705
[11] Compagno G, Palma G M, Passante R and Persico F 1995 J. Phys. B: At. Mol. Opt. Phys. 28 1105
[12] Maiani L and Testa M 1995 Phys. Lett. B 356 319
[13] Karpov E, Ordonez G, Petrosky T, Prigogine I and Pronko G 2000 Phys. Rev. A 62 012103
[14] Petrosky T, Tasaki S and Prigogine I 1991 Physica A 170 306
[15] Bohr N and Rosenfeld L 1933 Mat. Fys. Meddr. K. Dansk. Vidensk. Selsk. 12 no 8 (Engl. transl. 1983 Quantum

Theory and Measurement ed J A Wheeler and W H Zurek (Princeton, NJ: Princeton University Press) p 479)
[16] Compagno G and Persico F 1998 Phys. Rev. A 57 1595
[17] Barnett S M, Aspect A and Milonni P W 2000 J. Phys. B: At. Mol. Opt. Phy. 33 L143
[18] Ginzburg V L 1996 Phys. Usp. 39 973
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[33] Jiménez J L and Campos I 1999 Found. Phys. Lett. 12 127
[34] Frenkel J and Santos R B 1999 Int. J. Mod. Phys. B 13 315
[35] Hirayama T and Hara T 2000 Prog. Theor. Phys. 103 907
[36] Bosanac S D 2001 J. Phys. A: Math. Gen. 34 473
[37] Horon O and Horwitz L P 2001 Phys. Lett. A 280 265
[38] Eriksen E and Gron Ø 2000 Nuovo Cimento B 115 1441
[39] Barton G 1989 Elements of Green’s Functions and Propagation (Oxford: Oxford University Press)
[40] See e.g. Milonni P W 1994 The Quantum Vacuum (New York: Academic)
[41] Nakajima M 1998 Helv. Phys. Acta 71 392

Comay E 1997 Am. J. Phys. 65 862
Moylan P 1995 Am. J. Phys. 63 818

[42] Hnizdo V 1999 Phys. Rev. A 60 4191
Hnizdo V 2000 J. Phys. A: Math. Gen. 33 4095

[43] Compagno G and Persico F 1999 Phys. Rev. A 60 4196
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